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Abstract. We propose a class of exactly solvable anisotropic tight-binding models on an infinite-
dimensional hypercube. The energy spectrum is computed analytically and is shown to be fractal
and/or absolutely continuous according to the value of the hopping parameters. In both cases,
the spectral and diffusion exponents are derived. The main result is that, even if the spectrum is
absolutely continuous, the diffusion exponent for the wave packet may be anything between 0 and
1 depending upon the class of models.

The interplay between the energy spectrum and the diffusion process for quantum systems is
still an open question. Indeed, recent studies have shown that the spreading of a wave packet
is determined by several exponents that depend on the nature of the spectrum (absolutely
continuous, singular continuous, pure point, or any mixture) [1, 2]. More recently, it has
been shown that the correlation dimension of the eigenstates also plays a crucial role in this
process [3]. In particular, for quasiperiodic systems, such as quasicrystals (QCs), it has been
shown that an anomalous behaviour of the wave packet spreading occurs when the spectrum
is singular continuous [4] (see below).

In such systems, scaling laws occur at many levels. We will concentrate upon two classes
of scaling exponents due to their importance for electronic and transport properties. The first
one concernspectral exponentslefined agfffgg dNV(E") ~ SE¥F) as§E — 0, where\ is
the local density of states (LDOS). An absolutely continuous spectrum in some intesf/al
energy impliest(E) = 1for E € I andE inthe spectrum. A pure point spectrumi/imamely
the LDOS is a sum of Dirac peaksinimpliesa(E) = 0 on the part of the spectrum contained
in 1. Finally, if 0 < a(E) < 1for E in some part of the spectrum implies a singular continuous
spectrum there. This is actually what happens for one-dimensional (1D) QCs [5, 6] such as the
Fibonacci chain. Such a singular continuous spectrum occurs for 1D chains with a potential
given by a substitution sequence [7-10]. The problem of two-dimensional (2D) electrons
on a square lattice under magnetic field that can be mapped onto a 1D Harper equation [11]
also displays a singular continuous spectrum [12] for incommensurate fluxes, and the spectral
exponents have been computed numerically [13]. A number of non-rigorous results suggesting
singular spectra were obtained for models on higher-dimensional QCs suchlalsyttieth
model[14], theoctagonal tiling[15], in the small-hopping regime. Finally, we also mention
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recent studies on Jacobi matrices associated i@thted function system@FSs) [17, 18]
generalizing Julia sets [19, 20] leading to the calculation of the spectral exponents.

The next class concermiffusion exponentgyiven by Lz (t) ~ t#£) ast — oo where
Lg(¢) characterizes the spreading of a typical wave packet of ene@iyer timer [21] (see
equation (16) for a definition of the exponentBallistic motion such as the electronic motion
in a perfect crystal, corresponds fo= 1. Strong localizationis defined by demanding
that sup_o, Le(r) < oo implying B(E) = 0. Theweak-localizationregime appearing in
weakly disordered metals generally corresponds te % namely to the case for which the
quantum evolution mimicks classical diffusion such as Brownian motion. Such behaviour of
the quantum diffusion also occurs in the random-phase approximation (RPA) [Aliakes
on values different from O% 1 we shall speak ainomalous diffusionin QCs for instance,
numerical results show thAtmay be anything between 0 and 1 and is model dependent [4, 16].
For realistic QCs, such d@sAlCuCo, anab initio calculation leads t@ = 0.375 at the Fermi

level [22].
The spectral and diffusion exponents are related througtteeneri inequality2]
o(E)
E) > — (1)

whered is the dimension of the system. This inequality implies that for an absolutely
continuous spectrum, ballistic motion always occurs in one dimensiont, whereas for higher
dimensions8 > 1/d. One of the main question addressed recently in this respect is whether
B can be computed more directly from It seems that this is indeed the case for Jacobi
matrices [17, 18], namely 1D chains with nearest-neighbour interactions. One important result
of this paper is precisely to show the opposite in the extreme case for whicho, namely

that there is no relation whatsoever betweendtiseand theg’s. This gives a negative answer

to the question raised by Lebowitz (see [23]). This is due to the fact that the spectral exponents
characterize only the spectral measure (the LDOS) of the Hamiltdtiandependently of

any other type of observable. On the other hand, the diffusion exponents involves the interplay
between the Hamiltonian (through the quantum evolution) angdtisition operatorX, or

even better, theurrent (or velocity) operator] = i[ H, X]/h. The link between the diffusion
exponeng and the pai(H, J) is still not precisely established, even though it has been related
to thecurrent-current correlation functiof24, 21]. However, Jacobi matrices are very special
since the position operator is defined by mean of the orthogonal polynomials associated with
the spectral measure (the LDOS), so thas defined through purely spectral properties.

In this paper, we consider a family of anisotropic tight-binding models in an infinite-
dimensional hypercubic structure and show that, depending upon the explicit form of the
hopping parameters, it is possible to shift from an absolutely continuous spectrum to a singular
continuous spectrum. Moreover, we are able to adjust the fractal dimension of this spectrum,
fine-tuning a single parameter that drives the transition. In addition, we show that depending
on the hopping term law, one can face an absolutely continuous spectrum and a somewhat
anomalous diffusion for which the mean square deplaceténtcan either scale as logr
ast® with 0 < o < 1. We first introduce some mathematical tools that are useful for a careful
analysis of the structure we are dealing with. We then characterize the energy spectrum for
different types of tight-binding Hamiltonians and discuss the nature of their spectral measures.
Finally, we compute the autocorrelation function and the mean square displacement of a wave
packet for the different models.

Tt HoweverS(E) = 0 does not necessarily implies that (r) /t converges to a positive constantas- co. Because
B(E) is the infimum of the/’s such thatflC>O dr L)/t < oo (see equation (16)). A counter-example can be found
in [23].
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A d-dimensional hypercub&, is the set of vertices of a cube of size 1 id-dimensional
space. The infinite-dimensional hypercubes defined by:A = (J,.; A4. It can therefore
be seen as the set of sequenees: (&;);2, whereg, € {0,1} ande, = O for all but a
finite number ofk’s. We endow the s€i0, 1} with the group structure given by the addition
modulo 2, so that becomes a discrete countable group for the coordinatewise addition. Itis
also convenient to introduce its dual graBf3 stands for Brillouin), which is the counterpart
of the quasimomentum space in a perfect crydtalan be described as the set of all sequences
o = (o2 With o, = £1. B is a compact abelian group with the pointwise multiplication
and the product topology. The duality betwerand is given by the characters

o0
Vo eB VeeA Xo (&) =[] o™ 2)
k=0

In this formula, the product is finite by construction. Moreover(e + &) = x, (&) x5 ()

andy.+.(¢) = xo (€)%, (€) . These characters play the role of the Bloch phasdiéxp in a
crystal, where: is the period of the translation group, ahtd a quasimomentum. While ok

the Haar measure is the counting one, the integral of a continuous furfctar8 is defined
as

1
do f(o) = lim — f(o). 3
/B Koo 2K aO:il;r,(::tl

The Hilbert space of physical statesis = ¢?(A), namely the set of sequencgsge)
indexed byA (the wavefunctions), such that

Iy 12 =Y 19 (o)) < +oo. 4
geA
A canonical orthonormal basis is provided by the stétgsanishing everywhere but on the
‘site’ ¢. The Fourier transform of the wavefunctigh € H is the function on3 formally
defined by

FY©) =) xe (@)Y (&) (5)
eeA
This function actually belongs ®?(B), namely it is square integrable @{with respect to the
Haar measure) and the Parseval identity holds true naell§ = | 7y | = [, do |Fy (0)]2.
Therefore we get two unitarily equivalent representations of the Hilbert space of states.
The translation operatoB(a), (a € A) are acting orH as follows:

T(a)y(e) = Y (e —a). (6)

Equivalently,T (a)|e) = |e — a). Note thata = —a in A due to the addition modulo 2, so
that7(a)? = 1,Va € A. In additionT (a) = T(a)" as can be easily checked, so that there
is an infinite set of mutually commuting unitary and self-adjoint operators. The spectrum of
such operators is made of two eigenvalues (with infinite multiplicities) nasélyThrough
a Fourier transform7 (a) becomes the operator of multiplication gy (a). Particularly, if
a = e, Wheregy is the sequence ik with all coordinates vanishing except théh one,
T, = T (e;) becomes simply the operator of multiplication day

We consider the following class of tight-binding Hamiltonianson

H = Z ti Ty (7)
k=0

In order thatH be self-adjoint we neeg € R. By a simple unitary tranformation, one can
choose;, > 0. The coefficient, denote the ‘transfer’ or *hopping’ term in thi¢h direction.
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H is bounded if and only ip_ 7 < +oo. It is self-adjoint (but not necessarily bounded) if
> t2 < +oo. In what follows, we will assume that this latter condition holds. By Fourier
tranform, H becomes the operator of multiplication (o) where E is called theband
functionand is given by

E(o) = Zoktk. (8)
k=0

This function is real and square integrable®with £2 norm:

/ do E(0)? =) 1. )
B k=0

The spectrum ofH (its spectral measure), is then given by the imagesadh R (of the
measure d) under the functionE. Note that if H is bounded,E is continuous with
IH| = sup,cs | E@)] = Y 5o tk-

The spectral properties can be studied through the autocorrelation function

2
P(s) = [{0]€*"|0)|? = ( fR du(E) ésE) (10)

where |0) denotes an origin site where we initially localize a wave packet anthe
corresponding spectral measure. Note that the translation invariaftaltdws us to choose

any site ofA as initial condition. IfP is integrable oveR, thenu is absolutely continuous
(the converse may not be true). Alternatively, one can use the temporal correlation function:

Ct) = %/ ds P(s) (11)
0

that is the time-averaged version Bf The spectral measure is purely continuous (singular or
absolutely continuous) if and only @ (r) — 0 ast — oo (the Wiener criterion).
An elementary computation using (3) leads to

P(s) = [ [ coS(str). (12)
k=0

This infinite product converges sind€ 1> < +oo.

We define the position operator as follows. FRore N, X, denotes the operator of
multiplication bye; in H. It commutes with7; for I # k WhereasTkaTk‘1 =1- X, and
sinceT? = 1it follows that:

e*Tc = coss +iTj sins. (13)

Let us define the mean square displacement by

]

LE(s) = ) (ol (Xi(s) — X, (0)? |) (14)

k=0

whereX, (s) = exp(is H) X, exp(—is H) denotes the Heisenberg representatioki;ond|¢)
is an initial state with energy close #©. This expression does not depend upon the explicit
choice ofyp as it turns out. Using the previous relations, for dhgne gets

Li(s) = L(s) = ) _ sinP(st). (15)
k=0
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The diffusion exponeng is given byL(s) ~ s# ass — oo. It does not depend oA. A
rigourous way to define a power-law asymptotic behaviour is given as follows (see [21, 25]
for more details): a functiorf of a real variable behaves as’ whens — oo if

fcoos(j—ibf(s) c>0 (16)

converges fob > B and diverges fob < . In addition, if the functionf can be written as a
series:

f(s) =) F(st) (17)
k=0

whereF is a positive bounded real function, such ti#at) = O(x?) for x ~ 0, and(#;)xen
is a set of positive number such tHag” .12 < oo, then the exponert is given by

oo
ﬁ:inf{beR+;Zt,f<oo}. (18)
k=0

Itis clear that this definition is particularly convenient for our purpose sirfde exactly of the
form (17). The closed forms obtained for the three observables previously discussed (energy,
autocorrelation function, mean square displacement), allows us to study the spectrum and the
quantum diffusion for various classes of hopping terms.

Thefirstinteresting class of models consists of choosing an algebraic scaling of the hopping
parameters;, ~ k=7, namely lim_ o k"t = ¢, withy > % In this case, the spectrum is
bounded ify > 1 whereas it is unbounded jf < 1. Moreover, one can prove (see the

appendix) that
P(s) < crem (19)

wherecy, ¢, are two positive constants. This shows that the spectral measure is always
absolutely continuous and also infinitely differentiable. This also implies that the correlation
function decays as/t. In addition, according to expression (18), it is obvious that

L3(s) ~ sY7. (20)

Hence, the diffusion exponentfs= 1/2y which can take any value in ]JQ[ even though the
spectrum is always absolutely continuous.

Another interesting case i3 = (¢ — 1)/q**Y (geometrical scaling) witly > 1, for
which |H| = 1.

(i) For 1 < ¢ < 2, the spectrum is nothing but the-adic decomposition of real numbers
in the interval -1, +1]. It is therefore gapless and absolutely continuous.

(ii) For g > 2, the image oft is a Cantor set of zero Lebesgue measure, constructed by
removing the central interval of width(2 — 2/4) in the interval [-1, +1] and repeating the
operation on each of the intervals left. The spectrum is a monofractal set with a Hausdorff
dimensionDy = In2/Ing [26]. The spectral measure is the Cantor one and gives the same
weight to each subinterval. Note that the classical tryadic Cantor set is obtainge-f8t

For such Cantor spectra, it is shown in [1] that the temporal correlation function decays
asC(t) ~ t~P2, whereD; is the correlation dimension of the spectral measure (i.e. of the
local density of states). In this example, one hBg:= 1 for 1 < ¢ < 2, since the spectrum
is absolutely continuous, and, = Dy = log 2/logq for ¢ > 2 since the spectrum is then
a monofractal set. It is important to considérbecause the behaviour &f is much more
complex. In particularpP is sensitive to the nature gf Indeed, it is shown in [27] that

lim P(5)=0 & q¢S\{2) (21)
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where S denotes the set of algebraic integer numbers defined by Pisot and Vijayaraghavan

[28, 29].
Note that the functional relation
Vg € R P(gs) = coS(s(g — 1)) P(s) (22)
allows us to exactly determin® for ¢ = 2 since
P(25) = COS(s)P(s) < P(s) = sinf(s)/s> (23)

According to the identity (18) one obtains a diffusion exponent 0 for anyg > 1,
whereas the spectrum can be either absolutely continous or singular continuous. In addition,
one can show that?(s) ~ In (s), with a criterion similar to the one given in (16).

In conclusion, these toy models defined on infinite-dimensional hypercubes allows us to
carefully analyze the possible relationships between the spectral measure and the diffusion
exponents. The first class of Hamiltonians (algebraic scaling of the hopping terms), shows
that it is possible to face an absolutely continuous spectrum and an anomalous diffusion with
a B exponent that can take any value between 0 and 1. On the other hand, the second case
(geometrical scaling of the hopping parameters), displays a gesgponent whereas the
spectrum can be either absolutely or singular continuous. Finally, we emphasize upon the
importance of these exponents in transport properties, especially in quasicrystals, where they
should be responsible for the anomalous behaviour of their conductivity.

Appendix. Proof of equation (19)

Let us consideik > O large enough so thaf2k” < < 2t/kY for k > K. Then choose
so > 0 large enough so thagt /K < /2 < sot/(K —1)Y. Fors > splet K; > K be such
thatst/2K] < m/2 < st/2(Ky — 1)”. Then

InP(s) < Y Incos st/2k”

k=K1

If one setsy, = k (2/s1)Y7, the right-hand side is dominated by an integral of the form

In P(s) < (ts/2)Y7 /OO dx Incog(1/x7)

@/m)H7+0(s1/7)
for s > 59, leading to equation (19).
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