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Abstract. We propose a class of exactly solvable anisotropic tight-binding models on an infinite-
dimensional hypercube. The energy spectrum is computed analytically and is shown to be fractal
and/or absolutely continuous according to the value of the hopping parameters. In both cases,
the spectral and diffusion exponents are derived. The main result is that, even if the spectrum is
absolutely continuous, the diffusion exponent for the wave packet may be anything between 0 and
1 depending upon the class of models.

The interplay between the energy spectrum and the diffusion process for quantum systems is
still an open question. Indeed, recent studies have shown that the spreading of a wave packet
is determined by several exponents that depend on the nature of the spectrum (absolutely
continuous, singular continuous, pure point, or any mixture) [1, 2]. More recently, it has
been shown that the correlation dimension of the eigenstates also plays a crucial role in this
process [3]. In particular, for quasiperiodic systems, such as quasicrystals (QCs), it has been
shown that an anomalous behaviour of the wave packet spreading occurs when the spectrum
is singular continuous [4] (see below).

In such systems, scaling laws occur at many levels. We will concentrate upon two classes
of scaling exponents due to their importance for electronic and transport properties. The first
one concernsspectral exponents, defined as

∫ E+δE
E−δE dN (E′) ∼ δEα(E) asδE→ 0, whereN is

the local density of states (LDOS). An absolutely continuous spectrum in some intervalI of
energy impliesα(E) = 1 forE ∈ I andE in the spectrum. A pure point spectrum inI , namely
the LDOS is a sum of Dirac peaks inI , impliesα(E) = 0 on the part of the spectrum contained
in I . Finally, if 0< α(E) < 1 forE in some part of the spectrum implies a singular continuous
spectrum there. This is actually what happens for one-dimensional (1D) QCs [5, 6] such as the
Fibonacci chain. Such a singular continuous spectrum occurs for 1D chains with a potential
given by a substitution sequence [7–10]. The problem of two-dimensional (2D) electrons
on a square lattice under magnetic field that can be mapped onto a 1D Harper equation [11]
also displays a singular continuous spectrum [12] for incommensurate fluxes, and the spectral
exponents have been computed numerically [13]. A number of non-rigorous results suggesting
singular spectra were obtained for models on higher-dimensional QCs such as thelabyrinth
model[14], theoctagonal tiling[15], in the small-hopping regime. Finally, we also mention
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recent studies on Jacobi matrices associated withiterated function systems(IFSs) [17, 18]
generalizing Julia sets [19, 20] leading to the calculation of the spectral exponents.

The next class concernsdiffusion exponents, given byLE(t) ∼ tβ(E) ast → ∞ where
LE(t) characterizes the spreading of a typical wave packet of energyE after timet [21] (see
equation (16) for a definition of the exponents).Ballistic motion such as the electronic motion
in a perfect crystal, corresponds toβ = 1. Strong localizationis defined by demanding
that supt>0LE(t) < ∞ implying β(E) = 0. Theweak-localizationregime appearing in
weakly disordered metals generally corresponds toβ = 1

2, namely to the case for which the
quantum evolution mimicks classical diffusion such as Brownian motion. Such behaviour of
the quantum diffusion also occurs in the random-phase approximation (RPA) [21]. Ifβ takes
on values different from 0, 1

2, 1 we shall speak ofanomalous diffusion. In QCs for instance,
numerical results show thatβmay be anything between 0 and 1 and is model dependent [4, 16].
For realistic QCs, such asi-AlCuCo, anab initio calculation leads toβ = 0.375 at the Fermi
level [22].

The spectral and diffusion exponents are related through theGuarneri inequality[2]

β(E) > α(E)

d
(1)

where d is the dimension of the system. This inequality implies that for an absolutely
continuous spectrum, ballistic motion always occurs in one dimension†, whereas for higher
dimensionsβ > 1/d. One of the main question addressed recently in this respect is whether
β can be computed more directly fromα. It seems that this is indeed the case for Jacobi
matrices [17, 18], namely 1D chains with nearest-neighbour interactions. One important result
of this paper is precisely to show the opposite in the extreme case for whichd = ∞, namely
that there is no relation whatsoever between theα’s and theβ ’s. This gives a negative answer
to the question raised by Lebowitz (see [23]). This is due to the fact that the spectral exponents
characterize only the spectral measure (the LDOS) of the HamiltonianH , independently of
any other type of observable. On the other hand, the diffusion exponents involves the interplay
between the Hamiltonian (through the quantum evolution) and theposition operatorX, or
even better, thecurrent (or velocity) operatorJ = i[H,X]/h̄. The link between the diffusion
exponentβ and the pair(H,J) is still not precisely established, even though it has been related
to thecurrent-current correlation function[24, 21]. However, Jacobi matrices are very special
since the position operator is defined by mean of the orthogonal polynomials associated with
the spectral measure (the LDOS), so thatβ is defined through purely spectral properties.

In this paper, we consider a family of anisotropic tight-binding models in an infinite-
dimensional hypercubic structure and show that, depending upon the explicit form of the
hopping parameters, it is possible to shift from an absolutely continuous spectrum to a singular
continuous spectrum. Moreover, we are able to adjust the fractal dimension of this spectrum,
fine-tuning a single parameter that drives the transition. In addition, we show that depending
on the hopping term law, one can face an absolutely continuous spectrum and a somewhat
anomalous diffusion for which the mean square deplacementL(t) can either scale as logt or
astα with 0< α < 1. We first introduce some mathematical tools that are useful for a careful
analysis of the structure we are dealing with. We then characterize the energy spectrum for
different types of tight-binding Hamiltonians and discuss the nature of their spectral measures.
Finally, we compute the autocorrelation function and the mean square displacement of a wave
packet for the different models.

† However,β(E) = 0 does not necessarily implies thatLE(t)/t converges to a positive constant ast →∞. Because
β(E) is the infimum of theγ ’s such that

∫∞
1 dt L(t)/t1+γ <∞ (see equation (16)). A counter-example can be found

in [23].
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A d-dimensional hypercube1d is the set of vertices of a cube of size 1 in ad-dimensional
space. The infinite-dimensional hypercube1 is defined by:1 = ⋃d>11d . It can therefore
be seen as the set of sequencesε = (εk)

∞
k=0 whereεk ∈ {0, 1} and εk = 0 for all but a

finite number ofk’s. We endow the set{0, 1} with the group structure given by the addition
modulo 2, so that1 becomes a discrete countable group for the coordinatewise addition. It is
also convenient to introduce its dual groupB (B stands for Brillouin), which is the counterpart
of the quasimomentum space in a perfect crystal.B can be described as the set of all sequences
σ = (σk)∞k=0 with σk = ±1. B is a compact abelian group with the pointwise multiplication
and the product topology. The duality between1 andB is given by the characters

∀σ ∈ B ∀ε ∈ 1 χσ (ε) =
∞∏
k=0

σ
εk
k . (2)

In this formula, the product is finite by construction. Moreover,χσ (ε + ε′) = χσ (ε)χσ (ε
′)

andχσ+σ ′(ε) = χσ (ε)χσ ′(ε) . These characters play the role of the Bloch phase exp(ika) in a
crystal, wherea is the period of the translation group, andk is a quasimomentum. While on1
the Haar measure is the counting one, the integral of a continuous functionf onB is defined
as ∫

B
dσ f (σ) = lim

K→∞
1

2K
∑

σ0=±1,...,σK=±1

f (σ). (3)

The Hilbert space of physical states isH = `2(1), namely the set of sequencesψ(ε)
indexed by1 (the wavefunctions), such that

‖ψ‖2 =
∑
ε∈1
|ψ(ε)|2 < +∞. (4)

A canonical orthonormal basis is provided by the states|ε〉 vanishing everywhere but on the
‘site’ ε. The Fourier transform of the wavefunctionψ ∈ H is the function onB formally
defined by

Fψ(σ) =
∑
ε∈1

χσ (ε)ψ(ε). (5)

This function actually belongs toL2(B), namely it is square integrable onB (with respect to the
Haar measure) and the Parseval identity holds true namely‖ψ‖2 = ‖Fψ‖2 = ∫B dσ |Fψ(σ)|2.
Therefore we get two unitarily equivalent representations of the Hilbert space of states.

The translation operatorsT (a), (a ∈ 1) are acting onH as follows:

T (a)ψ(ε) = ψ(ε − a). (6)

Equivalently,T (a)|ε〉 = |ε − a〉. Note thata = −a in 1 due to the addition modulo 2, so
thatT (a)2 = 1, ∀a ∈ 1. In additionT (a) = T (a)† as can be easily checked, so that there
is an infinite set of mutually commuting unitary and self-adjoint operators. The spectrum of
such operators is made of two eigenvalues (with infinite multiplicities) namely±1. Through
a Fourier transform,T (a) becomes the operator of multiplication byχσ (a). Particularly, if
a = ek, whereek is the sequence in1 with all coordinates vanishing except thekth one,
Tk = T (ek) becomes simply the operator of multiplication byσk.

We consider the following class of tight-binding Hamiltonians onH:

H =
∞∑
k=0

tkTk. (7)

In order thatH be self-adjoint we needtk ∈ R. By a simple unitary tranformation, one can
choosetk > 0. The coefficienttk denote the ‘transfer’ or ‘hopping’ term in thekth direction.
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H is bounded if and only if
∑
tk < +∞. It is self-adjoint (but not necessarily bounded) if∑

t2k < +∞. In what follows, we will assume that this latter condition holds. By Fourier
tranform,H becomes the operator of multiplication byE(σ) whereE is called theband
functionand is given by

E(σ) =
∞∑
k=0

σktk. (8)

This function is real and square integrable onB with L2 norm:∫
B

dσ E(σ)2 =
∞∑
k=0

t2k . (9)

The spectrum ofH (its spectral measure), is then given by the image ofB in R (of the
measure dσ ) under the functionE. Note that ifH is bounded,E is continuous with
‖H‖ = supσ∈B |E(σ)| =

∑∞
k=0 tk.

The spectral properties can be studied through the autocorrelation function

P(s) = |〈0|eisH |0〉|2 =
(∫
R

dµ(E) eisE

)2

(10)

where |0〉 denotes an origin site where we initially localize a wave packet andµ the
corresponding spectral measure. Note that the translation invariance ofH allows us to choose
any site of1 as initial condition. IfP is integrable overR, thenµ is absolutely continuous
(the converse may not be true). Alternatively, one can use the temporal correlation function:

C(t) = 1

t

∫ t

0
ds P (s) (11)

that is the time-averaged version ofP . The spectral measure is purely continuous (singular or
absolutely continuous) if and only ifC(t)→ 0 ast →∞ (the Wiener criterion).

An elementary computation using (3) leads to

P(s) =
∞∏
k=0

cos2(stk). (12)

This infinite product converges since
∑
t2k < +∞.

We define the position operator as follows. Fork ∈ N, Xk denotes the operator of
multiplication byεk in H. It commutes withTl for l 6= k whereasTkXkT

−1
k = 1− Xk, and

sinceT 2
k = 1 it follows that:

eisTk = coss + iTk sins. (13)

Let us define the mean square displacement by

L2
E(s) =

∞∑
k=0

〈ϕ| (Xk(s)−Xk(0))2 |ϕ〉 (14)

whereXk(s) = exp(isH)Xk exp(−isH) denotes the Heisenberg representation ofXk and|ϕ〉
is an initial state with energy close toE. This expression does not depend upon the explicit
choice ofϕ as it turns out. Using the previous relations, for anyE one gets

L2
E(s) = L2(s) =

∞∑
k=0

sin2(stk). (15)
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The diffusion exponentβ is given byL(s) ∼ sβ ass →∞. It does not depend onE. A
rigourous way to define a power-law asymptotic behaviour is given as follows (see [21, 25]
for more details): a functionf of a real variables behaves assβ whens →∞ if∫ ∞

c

ds

s1+b
f (s) c > 0 (16)

converges forb > β and diverges forb < β. In addition, if the functionf can be written as a
series:

f (s) =
∞∑
k=0

F(stk) (17)

whereF is a positive bounded real function, such thatF(x) = O(x2) for x ∼ 0, and(tk)k∈N
is a set of positive number such that

∑∞
k=0 t

2
k <∞, then the exponentβ is given by

β = inf

{
b ∈ R+;

∞∑
k=0

tbk <∞
}
. (18)

It is clear that this definition is particularly convenient for our purpose sinceL2 is exactly of the
form (17). The closed forms obtained for the three observables previously discussed (energy,
autocorrelation function, mean square displacement), allows us to study the spectrum and the
quantum diffusion for various classes of hopping terms.

The first interesting class of models consists of choosing an algebraic scaling of the hopping
parameterstk ∼ k−γ , namely limk→∞ kγ tk = t , with γ > 1

2. In this case, the spectrum is
bounded ifγ > 1 whereas it is unbounded ifγ 6 1. Moreover, one can prove (see the
appendix) that

P(s) 6 c1e−c2s
1/γ

(19)

where c1, c2 are two positive constants. This shows that the spectral measure is always
absolutely continuous and also infinitely differentiable. This also implies that the correlation
function decays as 1/t . In addition, according to expression (18), it is obvious that

L2(s) ∼ s1/γ . (20)

Hence, the diffusion exponent isβ = 1/2γ which can take any value in ]0, 1[ even though the
spectrum is always absolutely continuous.

Another interesting case istk = (q − 1)/q(k+1) (geometrical scaling) withq > 1, for
which‖H‖ = 1.

(i) For 1< q 6 2, the spectrum is nothing but theq−adic decomposition of real numbers
in the interval [−1,+1]. It is therefore gapless and absolutely continuous.

(ii) For q > 2, the image ofE is a Cantor set of zero Lebesgue measure, constructed by
removing the central interval of width 2(1− 2/q) in the interval [−1,+1] and repeating the
operation on each of the intervals left. The spectrum is a monofractal set with a Hausdorff
dimensionDH = ln 2/ ln q [26]. The spectral measure is the Cantor one and gives the same
weight to each subinterval. Note that the classical tryadic Cantor set is obtained forq = 3.

For such Cantor spectra, it is shown in [1] that the temporal correlation function decays
asC(t) ∼ t−D2, whereD2 is the correlation dimension of the spectral measure (i.e. of the
local density of states). In this example, one has:D2 = 1 for 1< q 6 2, since the spectrum
is absolutely continuous, andD2 = DH = log 2/ logq for q > 2 since the spectrum is then
a monofractal set. It is important to considerC because the behaviour ofP is much more
complex. In particular,P is sensitive to the nature ofq. Indeed, it is shown in [27] that

lim
s→∞P(s) = 0 ⇔ q /∈ S \ {2} (21)
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whereS denotes the set of algebraic integer numbers defined by Pisot and Vijayaraghavan
[28, 29].

Note that the functional relation

∀q ∈ R P(qs) = cos2(s(q − 1))P (s) (22)

allows us to exactly determineP for q = 2 since

P(2s) = cos2(s)P (s) ⇔ P(s) = sin2(s)/s2. (23)

According to the identity (18) one obtains a diffusion exponentβ = 0 for anyq > 1,
whereas the spectrum can be either absolutely continous or singular continuous. In addition,
one can show thatL2(s) ∼ ln (s), with a criterion similar to the one given in (16).

In conclusion, these toy models defined on infinite-dimensional hypercubes allows us to
carefully analyze the possible relationships between the spectral measure and the diffusion
exponents. The first class of Hamiltonians (algebraic scaling of the hopping terms), shows
that it is possible to face an absolutely continuous spectrum and an anomalous diffusion with
a β exponent that can take any value between 0 and 1. On the other hand, the second case
(geometrical scaling of the hopping parameters), displays a zeroβ exponent whereas the
spectrum can be either absolutely or singular continuous. Finally, we emphasize upon the
importance of these exponents in transport properties, especially in quasicrystals, where they
should be responsible for the anomalous behaviour of their conductivity.

Appendix. Proof of equation (19)

Let us considerK > 0 large enough so thatt/2kγ 6 tk 6 2t/kγ for k > K. Then choose
s0 > 0 large enough so thats0t/Kγ 6 π/2 6 s0t/(K − 1)γ . For s > s0 letK1 > K be such
thatst/2Kγ

1 < π/26 st/2(K1− 1)γ . Then

lnP(s) 6
∞∑

k=K1

ln cos2 st/2kγ

If one setsxk = k (2/st)1/γ , the right-hand side is dominated by an integral of the form

lnP(s) 6 (ts/2)1/γ
∫ ∞
(2/π)1/γ +O(s1/γ )

dx ln cos2(1/xγ )

for s > s0, leading to equation (19).
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